Устройство в рисунках инжектора

Датчики инжекторного двигателя

Все элементы можно поделить на исполнительные и датчики. Для начала мы рассмотрим датчики.

Датчик массового расхода воздуха (ДМРВ)

Этот элемент устанавливается перед воздушным фильтром, прямо на входе. В основе его работы лежит принцип разницы показаний. Так, через две платиновые нити проходит электричество. В зависимости от температуры их сопротивление меняется. Одна из нитей надежно укрыта от потока воздуха, что делает ее сопротивление неизменным. Вторая же охлаждается потоком, и на основании разницы величин, по тем же таблицам, о которых сказано выше, ЭБУ рассчитывает количество воздуха.

Датчик абсолютного давлении и температуры двигателя (ДАД)

Он используется либо в качестве альтернативы, либо вместе с вышеописанным для более высокой точности снятия показаний. Если вкратце, в нем имеется две камеры, одна из которых герметична и имеет внутри абсолютный вакуум. Вторая же камера подсоединяется к впускному коллектору, где создается разрежение во время такта впуска. Между этими камерами имеется диафрагма, а так же пьезоэлементы. Они вырабатывают напряжение при движении диафрагмы. Далее сигнал идет на ЭБУ.

Датчик положения коленчатого вала (ДПКВ)

Если посмотреть на шкив коленвала инжекторного двигателя, то можно рассмотреть на нем гребенку. Она магнитная. По всему периметру установлены зубцы. Всего их должно быть 60 штук, через каждые 6 градусов. Но двух из них нет, они нужны для синхронизации. Датчик положение коленчатого вала имеет в своем составе намагниченный стальной сердечный, а так же медную обмотку. При прохождении зубцов в обмотке возникает индукционный ток, напряжение которого зависит от скорости вращения шкива.

Датчик фаз (ДФ)

Не все двигатели им оснащались раньше, но сейчас его можно встретить практически везде. Он работает по принципу датчика Холла, то есть имеет диск с катушкой, а так же прорезь. Как только прорезь попадает на датчик, выходное напряжение на нем нулевое. Этот момент означает верхнюю мертвую точку такта сжатия первого цилиндра. Нужно это для того, чтобы ЭБУ мог генерировать напряжение для зажигания в нужном цилиндре, а так же контролировать такты. Чтобы, например, форсунка не открылась во время рабочего хода.

Датчик детонации

Он устанавливается на блоке цилиндров инжекторного двигателя. Как только в двигателе возникает детонация, по блоку передается вибрация. Датчик представляет собой пьезоэлемент, который генерирует напряжение, чем сильнее вибрации, тем выше напряжение. Соответственно, ЭБУ на основании его показаний корректирует момент зажигания. Но об этом позже.

Датчик положения дроссельной заслонки (ДПДЗ)

Видео: Инжекторная система питания устройство принцип работы основные неисправности

Видео: Тормозная система автомобиля Устройство и особенности работы

Принцип работы инжекторного двигателя

Инжекторный двигатель – это довольно сложный механизм, работа которого должна быть хорошо отлажена, чтобы получить от него максимальную производительность.

Центром всей системы является ЭБУ (электронный блок управления).

Он носит много названий, «мозги», «компьютер» и так далее.

По сути да, это компьютер, в который заложено огромное количество таблиц по составу смеси, времени впрыска топлива и прочего.

Например, если обороты двигателя равны 1500, дроссельная заслонка открыта на 10 градусов, а расход воздуха составляет 23 кг, то в цилиндр будет поступать одно количество топлива. Если же вводные параметры изменяются, то и результат будет другим. Если с блоком управления возникают какие-то проблемы, например, слетает прошивка, то все идет прахом, двигатель либо начинает как попало работать, либо и вовсе перестает.

Устройство и принцип работы инжектора

На сегодняшний день инжекторный (или, говоря по-научному, впрысковый) двигатель практически полностью заменил устаревшие карбюраторные двигатели. Инжекторный двигатель существенно улучшает эксплуатационные и мощностные показатели автомобиля (динамика разгона, экологические характеристики, расход топлива).
Инжекторные системы подачи топлива имеют перед карбюраторными следующие основные преимущества:

  • Точное дозирование топлива и, следовательно, более экономный его расход;
  • Снижение токсичности выхлопных газов. Достигается за счет оптимальности топливно-воздушной смеси и применения датчиков параметров выхлопных газов;
  • Увеличение мощности двигателя примерно на 7-10% за счет улучшения наполнения цилиндров, оптимальной установки угла опережения зажигания, соответствующего рабочему режиму двигателя;
  • Улучшение динамических свойств автомобиля. Система впрыска незамедлительно реагирует на любые изменения нагрузки, корректируя параметры топливно-воздушной смеси;
  • Легкость пуска независимо от погодных условий.

Характеристика

Название происходит от английского слова Inject, что дословно переводится как «впрыскивать». Что это такое – инжектор?

Это специальная форсунка, что устанавливается на двигатель внутреннего сгорания и является частью его системы питания, более усовершенствованный аналог карбюратора. Основная задача клапана инжектора – это распыление топливно-воздушной смеси в камере сгорания.


Впервые такая система была внедрена в начале 50-х годов на двухтактном двигателе купе Goliath 700. Спустя небольшое время начала появляться на «Мерседесах» (в том числе на модели 300 SL). Однако массовое вытеснение карбюраторов произошло лишь в 70-х годах. Немецкие производители начали использовать механический инжектор (также известный как «К-Джетроник»). С годами система получила электронное управление.

Что такое инжектор простыми словами

Подать топливо в цилиндр можно двумя способами:

  • Втянуть его при помощи разрежения, возникающего во время такта всасывания четырёхтактного двигателя, одновременно распыляя в проносящемся мимо сопла диффузора потоке воздуха;
  • Впрыснуть под внешним давлением, создаваемым отдельным насосом, через распылитель топливной форсунки.

По первому принципу действуют все карбюраторы, а второй является основой инжекторных систем впрыска.

История появления

Первые системы впрыска появились ещё в позапрошлом веке примерно одновременно с карбюраторами. Тогда же они были и запатентованы. Инженеры сразу сообразили, что если измерить массу поступающего воздуха, то можно с высокой точностью дозировать количество бензина, впрыскивая его под давлением. Но развитие техники тогда не позволило широко внедрять узлы этого направления в серийные автомобили.

Это интересно:  Как работает адаптивная регулируемая подвеска в автомобиле

Карбюраторы были несравненно проще и надёжней, а главное – дешевле. Прочие же их недостатки были не очень важны, поэтому все двигатели комплектовались исключительно карбюраторами.

Первыми с принципиальными недостатками карбюраторов столкнулись конструкторы авиационной техники. Самолёты испытывали перегрузки во всех направлениях, топливо поступало нерегулярно, моторы работали с перебоями. Поэтому на истребителях уже к началу второй мировой войны системы впрыска начали постепенно вытеснять карбюраторы.

Топливные инжекторы одинаково стабильно работали при любой пространственной ориентации самолёта и при любых перегрузках. Развитие это прекратилось только с окончанием применения поршневых двигателей в авиации и переходом на реактивную тягу.

Примерно тогда же на достоинства впрыска обратили внимание и конструкторы гоночных автомобилей. Здесь задачей было максимальное увеличение мощности моторов, с чем инжекторы справлялись куда лучше.

Как часто бывает в развитии автомобильной техники, новые топливные системы стали постепенно переходить и на гражданские серийные автомобили.

Сразу после войны разработкой инжекторов занялись многие специализированные фирмы, их труды были выкуплены и развиты крупными предприятиями, в результате чего сформировались основные типы и принципы работы приборов впрыска.

Лучшими изделиями стали узлы и агрегаты фирмы Bosch. Сначала чисто механические K-Jetronic, а потом и с внедрением электронных компонентов KE-Jetronic. Именно электроника позволила полностью решить все задачи и сформировать облик современной системы впрыска бензина.

Принцип работы инжекторного двигателя

Итак, после того, как мы разобрались в основных узлах инжекторного двигателя, посмотрим, как же он работает. После того как стартер провернул коленчатый вал, ДПКВ сообщил блоку управления, какой цилиндр в каком положении находится. В свою очередь, датчик фаз сообщил о тактах. Блок управления принял эту информацию к сведению и открыл форсунку в том цилиндре, в котором начинается такт впуска. Но открыл ее не просто так, а на строго определенный промежуток времени, который по таблицам соответствует показаниям ДМРВ или ДАД. Так сформировалась рабочая смесь.

Видео: как работает бензиновый инжекторный двигатель внутреннего сгорания

После того как здесь такт впуска закончился, начинается сжатие, в это время впуск происходит в другом цилиндре. Здесь же поршень доходит до верхней мертвой точки, о чем говорит ДПКВ и ДФ, соответственно, пора подавать напряжение на модуль зажигания, в нужный цилиндр. Для этого в блоке управления стоит два транзистора, которые берут на себя по два цилиндра.

Дальше, когда взрыв произошел, ЭБУ смотрит на показания датчик детонации и корректирует момент зажигания уже для следующего по ходу цилиндра. Но это еще не все. После этого, когда газы дошли до датчика кислорода, блок управления корректирует состав смеси, а именно, время открывания форсунки, что позволяет максимально эффективно использовать топливо и его сгорание. Если ЭБУ распознает недостаток кислорода, но при этом дроссельная заслонка остается открытой, то приоткрывается регулятор холостого хода.

Прогрев двигателя и датчик температуры двигателя

Этот момент стоит рассмотреть отдельно, скажем так, это небольшое уточнение. Итак, прогревочный режим двигателя никак не связан с показаниями некоторых датчиков, то есть, от них ничего не зависит. В частности, это ДМРВ и ДАД, а так же датчик детонации. В блоке, как уже говорилось, заложены определенные таблицы, их очень много, миллионы. Так вот, во время прогревочного режима ЭБУ работает строго по этим таблицам и никак иначе. Это значит, что если в него прописано соотношение воздуха к топливу 14,1:1, то так оно и будет. Эта цифра является общепринятой нормой для рабочей температуры. Так вот, пока температура двигателя не достигнет той, которая прописана в прошивке блока управления, то прогревочный режим не отключится. После ЭБУ начинает работать по датчикам.

Исполнительные элементы

Исполнительные элементы получили свое название за то, что именно они вносят коррективы в работу двигателя. ТО есть, блок управления получает сигнал от датчика, анализирует его, после чего отправляет сигнал на исполнительный элемент.

Топливный насос

Начнем с системы питания. Он установлен в баке и подает топливо в топливную рампу под давлением 3,2 – 3,5 Мпа. Это позволяет гарантировать качественный распыл топлива в цилиндры. Как только повышаются обороты двигателя, повышается и аппетит, а значит в рампу надо подавать большее количество топлива для сохранения давления. Насос начинает вращаться быстрее по команде блока управления. Большинство современных автомобилей, начиная примерно с 2013 года выпуска, оснащаются топливным модулем, который включает в себя насос и встроенный фильтр. Это существенно сказывается на стоимости замены фильтра, потому что менять надо весь модуль. Некоторые производители в инструкциях пишут, что модуль устанавливается на весь срок службы авто, однако не стоит верить, что какой-то фильтр способен проходить больше 2 сезонов.

Форсунка

После того, как топливо прошло всю цепь провода, оно попадает в форсунку, которая дозирует его подачу в цилиндр. Форсунка представляет собой электромагнитный клапан очень маленького диаметра, который обеспечивает распыл бензина в камеру сгорания. ЭБУ изменяет количество топлива, которое подается, при помощи временных промежутков, пока открыта форсунка. Как правило, это десятые доли секунды.

Регулятор холостого хода (РХХ)

Это тоже электромагнитный клапан, шток которого закрывает воздуховод, проходящий в обход дроссельной заслонки. В зависимости от напряжения, которое на него подает блок управления, он открывает этот самый канал.

Модуль зажигания

В принципе, это та же катушка зажигания, только их здесь четыре. При прохождении тока через первичную обмотку во вторичной коммутируется высокочастотный ток высокого напряжения, который подается на свечу.

Наиболее частые проблемы в работе инжектора

Вследствие повышенной сложности устройства инжекторного двигателя, его компоненты в процессе эксплуатации подвержены поломкам. Разбалансированность пропорций топлива и воздуха при подаче в камеру сгорания приводит к следующим проблемам:

  • плавающие обороты как во время движения, так и на холостом ходу;
  • троение двигателя;
  • увеличение расхода топлива;
  • снижение мощности силового агрегата;
  • изменение цвета выхлопных газов;
  • мотор не увеличивает обороты;
  • возникают детонации;
  • прогорают клапаны;
  • двигатель не заводится.

Если при эксплуатации транспортного средства появились описанные симптомы, это значит, что инжекторный двигатель нуждается в срочном техническом обслуживании с последующей заменой запчастей и настройками системы.

Вероятность возникновения сбоев в работе силового агрегата зависит от степени загрязнения топливного фильтра, отверстий распыляющих форсунок. Чаще всего эти механизмы засоряются при использовании некачественного бензина. Если транспортное средство имеет внушительный пробег более 60 000 км, рекомендуется прочищать либо полностью менять сетку бензонасоса.

Видео: Управление системой впрыска топлива

В чём особенности устройства?

Изучение конструкции позволит подробнее разобраться, как работает инжекторный двигатель. Компоненты, характерные для этого типа:

  • Блок электронного управления (ЭБУ);
  • Регулятор давления;
  • Форсунки;
  • Бензонасос;
  • Датчики.

Взаимодействие перечисленного: датчики получают данные о состоянии механики или процессах, их обрабатывает процессор и передает управляющие команды. Форсункам выделяется ограниченный заряд, который их открывает. Результат — смесь из топливного отдела попадает в отсек впускного коллектора.

Чтобы схема этого процесса стала более понятной, проведем краткий экскурс по устройству некоторых узлов, из которых состоит двигатель инжектор.

Основная его функция — бесперебойно выдавать команды составляющим автомобиля на основании обработанной информации. В нее входят:

  • факторы окружающей среды (температура, влажность, пр.);
  • степень нагрузки на механику (при подъеме на горку, передвижение по плохой дороге, др.);
  • режим мотора (холостой/скоростной ход, учет нагрузки при переходе на полный привод, т. д.).

При несовпадениях исходной программе компьютер задает исполняющим элементам корректировки. Блок способен проводить диагностику. Об отказе любого механизма-исполнителя, его некорректном функционировании водитель оповещается путем индикации CheckEngine на приборной панели. Сведения об ошибках собираются в памятном отделе, что при серьезных поломках помогает их оперативному обнаружению и устранению.

Виды заложенных устройств памяти:

  • Однократно программируемое постоянное запоминающее (ППЗУ) — содержит базовый программный код («мозг» автомашины). Его чип находится на плате панели, при выходе из строя легко меняется новым. При любых сбоях вложенные коды остаются храниться на нем.
  • Оперативное запоминающее (ОЗУ) — временный резервуар, применяемый для обработки задач по текущему сеансу. Устройство впаяно к плате; по прекращению подачи электричества из аккумулятора вся информация с него стирается.
  • Электрически программируемое (ЭПЗУ) — содержит временные данные и кодировку средств защиты от угона. В качестве питания использует вшитый аккумулятор, подзаряжаемый при движении. Через него сравниваются вшитые коды электронной блокировки и те же параметры иммобилайзера. При их несовпадении запуск инжекторного двигателя невозможен.

Виды инжекторов

Некоторая путаница в терминологии привела к тому, что понятие инжектора может применяться, как к системе впрыска в целом, так и к одиночной форсунке, в английском языке называемой injector.

В отечественной терминологии почти повсеместно слово «инжектор» означает всю систему впрыска, отличая её по принципу работы от карбюратора.

Различается несколько типов систем впрыска, как по расположению форсунок во впускном тракте, так и по способу организации:

  • Одноточечный впрыск в ресивер впуска, внешне очень похоже на карбюратор, но топливо поступает под давлением через управляемую форсунку;
  • Многоточечный впрыск во впускной коллектор максимально близко к впускному клапану каждого из цилиндров;
  • Непосредственный впрыск в камеру сгорания;
  • Механическое управление дозированием, когда количество топлива определяется положением расположенной в воздушном потоке пластины регулятора;
  • Электромеханический, часть функций регулирования передано от гидравлики к электронике;
  • Электронный впрыск, дозирование определяется вычисленным микрокомпьютером временем открытия клапанов форсунок.

На завершающем этапе развития устройство управления впрыском было интегрировано с системой зажигания, образовав функционально законченный модуль управления двигателем на основе зашитой в памяти устройства математической модели.

Основные принципы работы инжекторного двигателя

Инжекторная система имеет следующие компоненты:

  1. Топливная форсунка;
  2. Топливная рампа;
  3. Насос;
  4. Сам блок управления;
  5. И небольшая система датчиков.

Подробнее о каждом компоненте:

  • Топливная форсунка является основным компонентом, который и называют инжектором. Она позволяет своевременно подавать топливо и распылять его непосредственно в каждый цилиндр. В основе форсунки лежит простой корпус и электромагнитный клапан, который и осуществляет процесс открытия и закрытия форсунки. Что касается самого распыления, то оно происходит через специальное отверстие, управляемое клапаном.
  • Топливную рампу можно найти в любом современном инжекторном двигателе. Ее главное предназначение состоит в подводе топлива ко всем форсункам. Если говорить просто, то она соединяет все форсунки в единое целое.
  • Что касается топливного насоса, то он просто подает топливовоздушную смесь под давлением, сравнимую с давлением в несколько атмосфер. Без него бы топливо подавалось просто самотеком, как и в карбюраторном двигателе.
  • Мозгом системы является блок управления, который и отдает команды всем форсункам. По сути, это небольшой микроконтроллер, соединенный с большим количеством датчиков, форсунками, топливным насосом, системой зажигания, регулятором холостого хода и другими системами. Его главная задача состоит в сборе всей информации по состоянию двигателя и распределении топлива.
  • Датчики отвечают за измерение основных параметров силовой установки в реальном времени. В основном это расход воздуха, расположение коленвала, образование детонации в цилиндрах, температура, скорость транспортного средства и другое. Также можно встретить датчики, которые определяют включен ли кондиционер, ровная ли дорога и как располагается распределительный вал.

Видео: Системы впрыска или подачи топлива — разновидности, устройство. Просто о сложном

Виды инжекторных систем

Первые инжекторы, которые массово начали использовать на бензиновых моторах все еще были механическими, но у них уже начал появляться некоторые электрические элементы, способствовавшие лучшей работе мотора.


Современная же инжекторная система включает в себя большое количество электронных элементов, а вся работа системы контролируется контроллером, он же электронный блок управления.

Всего существует 3 типа инжекторных систем, различающихся по типу подачи топлива:

  1. Центральная;
  2. Распределенная;
  3. Непосредственная.

Центральная (моновпрыск) инжекторная система

Центральная инжекторная система сейчас уже является устаревшей. Суть ее в том, что топливо впрыскивается в одном месте – на входе во впускной коллектор, где оно смешивается с воздухом и распределяется по цилиндрам. В данном случае, ее работа очень схожа с карбюратором, с единственной лишь разницей, что топливо подается под давлением. Это обеспечивает его распыление и более лучшее смешивание с воздухом. Но ряд факторов мог повлиять на равномерную наполняемость цилиндров.

Центральная система отличалась простотой конструкции и быстрым реагированием на изменение рабочих параметров силовой установки. Но полноценно выполнять свои функции она не могла Из-за разности наполнения цилиндров не удавалось добиться нужного сгорания топлива в цилиндрах.

Распределенная (мультивпрыск) инжекторная система

Распределенная система – на данный момент самая оптимальная и используется на множестве автомобилей. У этого инжектора топливо подается отдельно для каждого цилиндра, хоть и впрыскивается оно тоже во впускной коллектор. Чтобы обеспечить раздельную подачу, элементы, которыми подается топливо, установлены рядом с головкой блока, и бензин подается в зону работы клапанов.

Благодаря такой конструкции, удается добиться соблюдения пропорций топливовоздушной смеси для обеспечения нужного горения. Автомобили с такой системой являются более экономичными, но при этом выход мощности – больше, да и окружающую среду они загрязняют меньше.

К недостаткам распределенной системы относится более сложная конструкция и чувствительность к качеству топлива.

Система непосредственного впрыска

Система непосредственного впрыска – разновидность распределенной и на данный момент самая совершенная. Она отличается тем, что топливо впрыскивается непосредственно в цилиндры, где уже и происходит смешивание его с воздухом. Эта система по принципу работы очень схожа с дизельной. Она позволяет еще больше снизить потребление бензина и обеспечивает больший выход мощности, но она очень сложная по конструкции и очень требовательна к качеству бензина.

Устройство инжектора

Если рассматривать саму форсунку, то она состоит из нескольких элементов:

  • Фильтра тонкой очистки.
  • Нажимной пружины.
  • Электромагнита.
  • Коннектора.
  • Обмотки электромагнита.
  • Резиновых уплотнителей.
  • Иглы-клапана.
  • Защитного кожуха.

Находится она между топливной рейкой и впускным коллектором.


Кроме этого, форсунка взаимодействует со следующими деталями:

  • Топливным насосом (погружного типа, с электрическим приводом).
  • Регулятором давления.
  • Электронным блоком (основной управляющий элемент).
  • Различными датчиками (температуры ДВС и концентрации СО в газах).

В зависимости от типа, инжектор (что это такое, мы уже знаем) может осуществлять подачу топлива напрямую в цилиндр либо во впускной коллектор. Последняя схема практиковалась на автомобилях с моновпрыском. Но вскоре автопроизводители перешли на более усовершенствованный, распределенный впрыск. В таком случае для каждого цилиндра стоит своя форсунка.


Принцип работы любого инжектора (8-клапанного ВАЗа в том числе) состоит в подаче бензина с воздухом через специальный клапан. А далее эта смесь поджигается свечей в камере, и поршень производит полезную работу.

Устройство

Современный инжектор содержит несколько подсистем:

  • Топливный насос, забирающий бензин из бака и подающий его на вход рампы форсунок под строго определённым давлением;
  • Бензиновые форсунки, состоящие из электромагнитных клапанов и распылителей;
  • Электронный блок (система) управления двигателем ЭСУД;
  • Набор датчиков, подающих в ЭСУД информацию о режиме работы двигателя, давлении, температуре и расходе воздуха, фазе, в которой в каждый момент находятся детали мотора, положении педали акселератора и многих других параметрах;
  • Системы снижения токсичности, включающей каталитический нейтрализатор отработанных газов, кислородные датчики, клапан подачи части выхлопа снова в цилиндры (рециркуляция или EGR);
  • Управление моментом подачи искры зажигания с датчиком детонации.

Все узлы расположены на двигателе и вокруг него, за исключением топливного насоса, который обычно погружён в бензин внутри бака.

Принцип работы

  1. В силовом агрегате топливная смесь подготавливается вне камеры сгорания при помощи специального устройства. В результате движения поршня вниз определенное количество топлива всасывается в камеру сгорания.
  2. Далее идет основной процесс, так называемый рабочий ход. В это время происходит сжимание топлива и поджигание при помощи искры.
  3. В итоге все топливо сгорает и выделяется огромное количество тепла, которое идет на мощность инжекторного двигателя.
  4. В конце такта поршень движется вверх и открывается выпускной клапан, который и выводит отработавшие газы. Далее приоткрывается впускной клапан, и новая порция топлива поступает в цилиндр.

Данный процесс происходит в течение долгого времени, пока двигатель работает. Специалисты называют такой газообмен четырехтактным. То есть все это происходит за четыре такта:

Чтобы совершить один такой цикл требуется два оборота коленвала. Чтобы потери мощности были минимальны, конструкторы придумали многоцилиндровые системы. Они позволяют выдавать огромное количество тепла и мощности.

В современном мире большую популярность получил четырехтактный инжекторный двигатель, что неудивительно. Дело в том, что он отличается не только техническими характеристиками, но и самими габаритами. В основе данной системы лежит порядок работы цилиндров.

Разновидности инжекторных моторов

В зависимости от числа форсунок, входящих в конструкцию, инжекторы разделяются на следующие категории:

  1. Моновпрыск (одноточечный).
  2. Распределенный.
  3. Прямой.

В первом варианте имеется единственная форсунка, поставляющая горючее во все цилиндры по очереди. Данная конструкция обладает множественными недочетами, поэтому не нашла широкого применения.

Распределенный впрыск состоит из коллектора и набора форсунок, предназначенных для клапанов впуска цилиндров.

При прямом впрыске топливо поступает из форсунки не в коллектор, а сразу в камеру сгорания.

Related Posts

Добавить комментарий